
Timed Automata

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

PALLAB DASGUPTA,

FNAE, FASc,

A K Singh Distinguished Professor in AI,

Dept of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

CS60030 FORMAL SYSTEMS

Off Light Bright
Press Press

Press

Press

WANT: from the Off state, if pressed twice quickly

then the light will get brighter;

otherwise the light will be turned off.

Some of these slides are adapted from Prof. Rajeev Alur’s presentations

Simple Light Control

Solution: Add a real-valued clock x

x:=0 x<=3

x>3

Adding continuous variables to state machines

Off Light Bright
Press Press

Press

Press

Simple Light Control

SIMILARLY: if left button of mouse is pressed twice quickly

then treat it as a double click;

otherwise treat it as a single click.

Systems and Automata

Systems under analysis are modeled and represented as transition systems:

• Finite automata

• Pushdown automata

• Program graphs

• Timed automata

• Hybrid automata

• Petri Nets

• Channel Systems

• Message Sequence Charts

• …

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

Examples of Models

 A numerical code door lock:

 A vending machine:

 A timed - switch:

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

Code: 207

nb_c: number of coins entered

nb_d: number of drinks available in the machine

Each drink costs 4 coins

Timed Automata - informally

Timed automaton: Finite automaton enriched with clocks

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

Timed Automata - informally

Timed automaton: Finite automaton enriched with clocks

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7

Transitions: equipped with guards

Timed Automata - informally

Timed automaton: Finite automaton enriched with clocks

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8

Transitions: equipped with guards and sets of reset clocks

Timed Automaton - Model Structure

A Timed Automaton is a tuple 𝑨 = 𝑳, 𝑳𝟎, 𝑳𝒂𝒄𝒄, 𝛴, 𝒳, 𝑬 where,

• L is a finite set of locations,

• L0 ⊆ L , is the initial set of locations

• Lacc ⊆ L , is the set of accepting locations

• 𝛴 is the finite alphabet

• 𝒳 is the finite set of clocks

• 𝑬 ⊆ 𝑳 × 𝓖 × 𝛴 × 𝟐𝒳 × 𝑳 , is the set of edges

• 𝓖 ٿ} = 𝒙 ⋈ 𝒄 | 𝒙 ∈ 𝒳, 𝒄 ∈ ℕ} is the set of

guards, ⋈ ∈ { <, ≤, =, >, ≥ }

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

𝑬 ⊆ 𝑳 × 𝓖 × 𝛴 × 𝟐𝒳 × 𝑳

Present Location Next Location

Guard Input Resets

Timed Automaton - Semantics

Valuation: 𝑣 ∈ ℝ+
𝓧 , assigns to each clock a clock-value.

State: (𝑙, 𝑣) ∈ 𝑳 × ℝ+
𝓧 , is composed of a valuation and a location.

Transitions between states of 𝑨:

• Delay transitions: (𝑙, 𝑣) ՜
𝝉

(𝑙 , 𝑣 + 𝜏)

• Discrete transitions: (𝑙, 𝑣) ՜
𝒂

(𝑙′ , 𝑣′)

• If ∃ 𝑙, 𝑔, 𝑎, 𝑌, 𝑙′ ∈ 𝐸 with 𝑣 ⊨ 𝑔 and ቊ
𝒗′ 𝒙 = 𝟎 𝑖𝑓 𝑥 ∈ 𝑌

𝒗′ 𝒙 = 𝒗 𝒙 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
0

Runs, Sequences, Words, Languages

Run of A:

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
1

(𝑙0, 𝑣0) ՜
𝝉1

(𝑙0 , 𝑣0+𝜏1) ՜
𝑎1

(𝑙1 , 𝑣1) ՜
𝝉2

(𝑙1 , 𝑣1+𝜏2) ՜
𝑎2

… ՜
𝑎𝑘

(𝑙𝑘 , 𝑣𝑘)

(𝑙0, 𝑣0)
𝜏1,

𝑎1
(𝑙1 , 𝑣1)

𝜏2,𝑎2
…

𝜏𝑘,𝑎𝑘
(𝑙𝑘 , 𝑣𝑘)or simply:

Time Sequence: 𝒕 = 𝑡𝑖 1≤𝑖≤𝑘 is a finite non-decreasing sequence over ℝ+.

Timed Word: w = (σ, 𝒕) = 𝑎𝑖, 𝑡𝑖 1≤𝑖≤𝑘 where 𝑎𝑖 ∈ Σ and 𝒕 is a time sequence.

Accepted Timed Word: A timed word w = 𝑎1, 𝑡1 𝑎2, 𝑡2 … 𝑎𝑘, 𝑡𝑘 is accepted in A, if there is a run

ρ = (𝑙0, 𝑣0)
𝜏1,

𝑎1
(𝑙1 , 𝑣1)

𝜏2,𝑎2
…

𝜏𝑘+1,𝑎𝑘+1
(𝑙𝑘+1, 𝑣𝑘+1) with 𝑙0 ∈ L0, 𝑙𝑘 ∈ Lacc and 𝑡𝑖 = σ𝑗<𝑖 𝑡𝑗

Accepted timed language: 𝓛(A) = w w accepted by A}

An Example

An accepting run for w is

(𝑙0,0,0)
0.1,𝑏

(𝑙0,0.1,0)
0.2,𝑏

(𝑙0,0.3,0)
1,𝑎

(𝑙0,1.3,1)
0.2,𝑏

(𝑙0,1.5,0)
0,𝑎

(𝑙1,0,0)
1,𝑏

(𝑙2,1,1)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
2

We omit:

 Guards when they are identity

 Reset set when empty

w = (b, 0.1)(b, 0.3)(a, 1.3)(b, 1.5)(a, 1.5)(b, 2.5) is an accepted timed word

More Examples

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
3

𝓛(A) = a, t1 , a, t2 , … , a, 𝑡𝑘 ∃𝑖 < 𝑗, 𝑡𝑗 − 𝑡𝑖 = 1}

Does there exist an

accepted timed word

containing action b?

n

m

x 5 y > 3, a, { x }

x 5

y 10

Location

Invariants

g1
g2 g3

g4

Adding Invariants

(n , x=2.4 , y=3.1415)
wait(3.2)

Invariants ensure progress!!

wait(1.1)
(n , x=2.4 , y=3.1415) (n , x=3.5 , y=4.2415)

1
4

Another Example: Model of a Small Jobshop !!

x 10
x 60

y 4
Rest Work hit,

start,

done,

x 5,

x 40,

y 1,

{ x }

{ x, y }

{ y }

Cant rest for more

than 10 mins

Must rest for at

least 5 mins

At most one

nail every minute

At least one nail

every 4 minutes

Cant work for more

than 60 minutes

Must work for at

least 40 minutes

1
5

Rail Gate Crossing

1
6

Gate Controller

Train

?-lower

down

up

?-raise

{ y }
y 1

y 2

y 1

{ y }

lower

?-exit

?-approach
z 3

z 1

raise

{ z }

{ z }

approach

exit

far near

in

enter

{ x }

{ x } x > 2

x 5
x 1,

Can the train enter the crossing before the gate is down?

Rail Gate Crossing

1
7

GateTrain

Controller

lower

?-exit

?-approach
z 3

z 1

raise

{ z }

{ z }

?-lower

down

up

?-raise

{ y }
y 1

y 2

y 1

{ y }

time

exit

far near

in

enter

{ x }

{ x } x > 2

x 5
approach

x 1,

Rail Gate Crossing

1
8

GateTrain

Controller

lower

?-exit

?-approach
z 3

z 1

raise

{ z }

{ z }

?-lower

down

up

?-raise

{ y }
y 1

y 2

y 1

{ y }

exit

far near

in

enter

{ x }

{ x } x > 2

x 5
approach

x 1,

approach

time
z 3

Rail Gate Crossing

1
9

GateTrain

Controller

lower

?-exit

?-approach
z 3

z 1

raise

{ z }

{ z }

?-lower

down

up

?-raise

{ y }
y 1

y 2

y 1

{ y }

exit

far near

in

enter

{ x }

{ x } x > 2

x 5
approach

x 1,

approach

time
z 3

lower

y 1

Rail Gate Crossing

2
0

GateTrain

Controller

lower

?-exit

?-approach
z 3

z 1

raise

{ z }

{ z }

?-lower

down

up

?-raise

{ y }
y 1

y 2

y 1

{ y }

exit

far near

in

enter

{ x }

{ x } x > 2

x 5
approach

x 1,

approach

time
z 3

lower

y 1

enter

x = 2.1

y = 0.9

z = 2.1

Time Convergence, Timelocks, Zenoness

• Not all paths in a timed automaton represent realistic behaviours.

• Three essential phenomena:

• Time Convergence

• Timelock

• Zenoness

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
1

Time Divergence

• A path is time divergent if the sum of the delays over this path is infinite.

• Time convergence - a path for which the sum of the delays are bounded by some natural numbers. Time over

this path will never increase above a constant.

• Represents unrealistic behaviours, cannot be avoided in the theory.

• For analysis ignore time convergent paths and only consider time divergent ones.

Execution time for an execution ρ: (𝑙0, 𝑣0)
𝜏1,

𝑎1
(𝑙1 , 𝑣1)

𝜏2,𝑎2
… with 𝑙0 ∈ L0 is given as ExecTime(ρ) = σ𝒊=𝟏

∞ 𝜏𝒊

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
2

Time divergence: An infinite path fragment π is time divergent if and only if ExecTime(π) = ∞.

Otherwise the path fragment is time convergent.

Time Convergent Paths

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
3

Time divergent path: off, 0 off, 1 on, 0 on, 1 off, 1 off, 2 on, 0 on, 1 off, 1 …

Time convergent path: off, 0 off, 1/2 off, 3/4 off, 7/8 off, 15/16 …

The path is time convergent because

𝒊=𝟎

∞
𝟏

𝟐

𝒊+𝟏

= 𝟏

Timelocks

• For a state σ in a timed-automaton, there must be some way for time to progress.

• If no way is possible, then “σ ” has a timelock.

A timed automaton is timelock-free iff none of its reachable states contains a timelock.

• A timelock is a modeling flaw – should be avoided.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
4

Let Pathsdiv(σ) be the set of time-divergent paths starting in σ. A state s contains

a timelock iff Pathsdiv(σ) = Φ

Timelocks

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
5

 off, 0 on, 2 on, 2.9 on, 2.99 on, 2.999 on, 2.9999

Here also we have reached a time lock. Time can progress, but only

along a time convergent path, and therefore up to a finite value.

 off, 0
switch_on

 on, 0 on, 2
2

Here the state, on, 2 , is a terminal state and is time locked. Time

cannot progress.

Zenoness

• Zeno paths represent non-realizable behaviour

• since their execution would require infinitely fast processors.

• Thus zeno paths are modelling flows and should be avoided.

• To check whether a timed automaton is non-zeno is algorithmically difficult.

• Instead, sufficient conditions are considered that are simple to check, e.g., by static analysis.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
6

An infinite path fragment π is zeno if and only if it is time-convergent and infinitely many

discrete actions are executed within π.

Zeno Behaviors

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
7

 off, 0
switch_on

 on, 0
switch_on

 on, 0
switch_on

 on, 0
switch_on

 off, 0
switch_on

 on, 0 on, 0.5
0.5 switch_on

 on, 0 on, 0.25
0.25 switch_on

Xeno behaviors

Revised Timed Automaton:

Modeling Exercise-1 An Elevator

Consider an autonomous elevator which operates between two floors. The requested behavior of the elevator is as

follows:

• The elevator can stop either at the ground floor or the first floor.

• When the elevator arrives at a certain floor, its door automatically opens. It takes at least 2 seconds from its

arrival before the door opens but the door must definitely open within 5 seconds.

• Whenever the elevator’s door is open, passengers can enter. They enter one by one and we (optimistically)

assume that the elevator has a sufficient capacity to accommodate any number of passengers waiting outside.

• The door can close only 4 seconds after the last passenger entered. After the door closes, the elevator waits at

least 2 seconds and then travels up or down to the other floor.

Suggest a timed automaton model of the elevator. Use the actions up and down to model the movement of the

elevator, open and close to describe the door operation and the action enter which means that a passenger is

entering the elevator.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
8

Elevator Model

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
9

x 4, close, {x}
x 5

x 2, up, {x}

x 4, close, {x}

x 5
x 2, down, {x}x 2, open, {x}

enter, {x}

Floor-1

enter, {x}

x 2, open, {x}

Floor-2

It takes at least 2 seconds from its

arrival before the door opens but the

door must definitely open within 5

seconds.

The door can close only 4 seconds after

the last passenger entered. After the door

closes, the elevator waits at least 2

seconds and then travels up or down to

the other floor.

Modeling Exercise-2 Quality of Service (QoS) of a Media Stream

Consider the following requirements for a media

stream channel and model a possible timed automaton

representation.

• Source emits a message every 50ms (that is, 20

messages per second)

• Channel latency is between 80 ms and 90 ms

• Channel may loose messages (no more than 20%)

• A message is considered lost if it does not arrive

within 90 ms

• Sink end receives messages and takes 5ms to

process each one

• An error should be generated if less than 15

messages per second arrive at the sink end

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
0

Source process Sink process

MEDIUM

sourceout
sinkin

Modeling Exercise-3 Refrigerator Door

When the door of a refrigerator is opened, the light inside the refrigerator turns ON. If the door is kept open for more

than one minute, then a beeper is activated. The beeper, when activated produces a beep, and then repeats the beep at

least once in every 30 seconds. When the door is closed, the light goes OFF and the beeper (if active) is deactivated.

• List the sensors your timed automaton will use. For each sensor, specify the label you will use to communicate each

event sensed by the sensor.

• Draw a timed automaton for each object that is interacting in this system. Draw timed automata for the door

controller which controls the light and the beeper. Use appropriate symbols indicating labels used as inputs and

outputs. You also need to draw automata for the beeper and the refrigerator light. In addition to the automata

mentioned, you may choose to draw supporting automata if required. You DO NOT need to draw the product of the

automata.

• For each automaton, clearly indicate which automaton is being used for each component.

• Clearly indicate the location names, the timers used in each automaton, the invariants, resets, transition

guards, and synchronization labels (inputs/outputs).

[Note: For simplicity, on a transition you may receive an input event and you may also generate one or more

output events on the same transition]

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
1

Verification of Timed Systems

• System modeled as a product of timed automata

• Verification problem reduced to reachability or to temporal logic model checking

• Applications

• Real-time controllers

• Asynchronous timed circuits

• Scheduling

• Distributed timing-based algorithms

From time to time regions

• The states of a timed automaton: loc, v

• Where loc refers to the location

• The k-dimensional vector of values of the k clock variables is denoted by v

• There are infinite states since the clock variables have dense real domains

• Important question: Can we discretize the domains of the clock variables into time regions so that all

values in a time region can be treated as equivalent?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
3

In the timed automaton shown here:

• We are concerned with the following intervals for x:

 0, 0 , 0, 1 , 1, 1 , 1, 2 , 2, 2 , 2,

• We can build a region automaton which is an abstraction of the timed
automaton with states: loc, region

• This is a type of predicate abstraction using predicates over the clock
variables

Timed Automata and Reachability Abstractions

The REGION GRAPH: (for a constraint set C)

• Set of Regions:

• 𝓡 (a finite partition of ℝ+
𝓧, the set of valuations) is a set of regions (for C) if the following all hold:

1. For every g ∈ C and for every R ∈ 𝓡 : R ⊆ 𝒈 OR 𝒈 ∩ R = Φ. In other words, R either

belongs fully inside the region satisfying g or totally outside the regions satisfying g.

2. For all R,R’ ∈ 𝓡, if there exists v ∈ R and t ∈ ℝ with v + t ∈ R’ then for every v’ ∈ R there exists a

t’ ∈ ℝ with v’ + t’ ∈ R’. In other words, every point in a region reaches the same next region as

time progresses.

3. For all R,R’ ∈ 𝓡, for every Y ⊆ 𝒳 if R[Y←0] ∩ R’ ≠ Φ, then R[Y←0] ⊆ R’. In other words, every point

in a region reaches the same next region when the clocks in 𝒳 are reset.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
4

Standard Regions

• Let M be the maximum constant in 𝑨.

The following equivalence relation yields the set of standard regions:

v ≡𝑴 v’ if for every x,y ∈ 𝒳

• v(x) > M ⇔ v’(x) > M

• v(x) ≤ M ⟹ (⌊ v(x) ⌋ = ⌊ v’(x) ⌋) and ({v(x)} = 0 ⇔ {v’(x)} = 0) where {v(x)} refers to the fractional part of v(x)

• (v(x) ≤ M and v(y) ≤ M) ⟹ ({v(x)} ≤ {v(y)} ⇔ {v’(x)} ≤ {v’(y)})

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
5

Standard Regions (what do the rules mean?)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
6

2 Clocks

=

2 dimensions

v ≡𝑴 v’ if for every x,y ∈ 𝒳

• v(x) > M ⇔ v’(x) > M

• v(x) ≤ M ⟹ (⌊ v(x) ⌋ = ⌊ v’(x) ⌋) and ({v(x)} = 0 ⇔ {v’(x)} = 0)

• (v(x) ≤ M and v(y) ≤ M) ⟹ ({v(x)} ≤ {v(y)} ⇔ {v’(x)} ≤ {v’(y)})

where {v(x)} refers to the fractional part of v(x)

The partition is compatible with constraints, time elapsing and resets.

Examples of Standard Regions

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
7

x=2, y=5 x=3, y=5

x=3, y=6x=2, y=6

x=3, 5 < y < 6x=2, 5 < y < 6

2 < x < 3, y=5

2 < x < 3, y=6

0 < x2 = y5 < 1

0 < x2 < y5 < 1

0 < y5 < x2 < 1

Operations on Regions

For two clocks, the (bounded) regions have the following shapes:

• R[Y←0] denotes the region obtained from R by resetting clocks in Y ⊆ 𝒳.

• R’ is a time-successor of R if there exists v’ ∈ R’, v ∈ R, t ∈ ℝ+ with v’ = v + t

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
8

(x=0,y=0) (0<x=y<1)𝒅𝒆𝒍𝒂𝒚
(0<x<1,y=0)

𝒚≔𝟎

(x=0,y=1)
𝒙≔𝟎

(0<y<x<1)
𝒅𝒆𝒍𝒂𝒚

(0<y<1=x)
𝒅𝒆𝒍𝒂𝒚

(1<x<2,0<y<1,{x}<{y})

𝒅𝒆𝒍𝒂𝒚

(y=1<x<2)
𝒅𝒆𝒍𝒂𝒚

Region Automaton

From a timed automaton 𝑨 we build a finite region automaton α(𝑨) as follows:

• States: 𝑳 × 𝓡

• Initial Set: L0 × 𝓡

• Final Set : Lacc × 𝓡

• Transitions: (𝑙, 𝑅) ՜
𝒂

(𝑙′ , 𝑅′) if there exists

• 𝑙
𝒈,𝒂,𝒀

𝑙′ in 𝑨,

• R’’ time-successor of R with R’’ ⊆ 𝒈 and R’ = R’’[Y←0].

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
9

Example

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
0

Timed Automaton

Region

Automaton

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
1

Gate

Train

Controller

Product Construction: Train || Controller || Gate

A Logic for Timed Automata – Timed CTL

TCTL = CTL + Time

A TCTL formula uses one or more formula clocks.

Syntax: ∅ ∷= 𝒑 𝜶 ¬∅ ∅ ∨ ∅ 𝒛 𝒊𝒏 ∅ 𝑬 ∅ ∪ ∅ 𝑨[∅ ∪ ∅]

• p ∈ AP, atomic propositions

• z ∈ D, formula clocks

• 𝜶 – constraints over formula clocks and automata clocks

• z in ∅ - “freeze operator” introduces a new formula clock z

• 𝑬 ∅ ∪ ∅ | 𝑨 ∅ ∪ ∅ - As in CTL

• No [E X ∅]

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
2

Derived Operators

Along any path, ∅ hold continuously until within 7 time units ψ becomes valid.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
3

A [∅ U≤7 ψ]

E [F5 ∅]

= z in A [(∅ ٿ z ≤7) U ψ]

There is a path on which the property ∅ becomes valid at or after 5 time units.

= z in EF [(z ∅ ٿ (5]

TCTL

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
4

Which formula is true in which automaton?

1. AF4 c

2. AFEG b

3. (AF5 c) (EG5 c)

4. (EG a) (EFEG b)

5. (EG a) (EFEG b)

6. (AF6 c) (EG6 c)

Answer:

1-(a) 2-(b) 3-(e) 4-(d) 5-(c) 6-(f)

Difference between CTL and TCTL

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
5

Consider the property: AG(on => AF off)

• If we treat this as a CTL property, then the automaton above does not satisfy it, because it can stay in the on-state forever

• If we treat this as a TCTL property, then the automaton satisfies it since TCTL properties are interpreted only over time

divergent paths, and all time divergent paths must return to the off-state

Variants of timed automata

Many variants of TA exist:

• Diagonal constraints:

Guards are conjunctions of constraints of the form x ⋈ c and x − y ⋈ c.

• Additive clock constraints:

constraints of the form x ⋈ c and x + y ⋈ c.

• Epsilon transitions:

Actions from the alphabet Σ ⋃ 𝜖

• Updatable timed automata:

Clocks updates of the form: x: ⋈ c and x: ⋈ y + c

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
6

Moving forward from Timed Automata

• Regular - Finite (Deterministic / Non-Deterministic Finite Automata)

• Locations = States, Memory is finite – states are finite.

• Discrete actions only

• Transition Systems

• Finite location systems : possibly infinite states (with variables)

• Discrete actions only

• Timed Automata

• Finite location systems – timers : possibly infinite states (When would a TA have finite states?)

• Discrete and Delay actions

• Hybrid Automata

• Finite location systems – beyond timers : possibly infinite states

• Discrete actions and Custom activities

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
7

